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Abstract
We study the correlation between the superparamagnetic blocking temperature TB and the peak
positions Tp observed in ac magnetization measurements for nanoparticles of different classes
of magnetic materials. In general, Tp = α + βTB. The parameters α and β are different for the
in-phase (χ ′) and out-of-phase (χ ′′) components and depend on the width σV of the log-normal
volume distribution and the class of magnetic material (ferromagnetic/antiferromagnetic).
Consequently, knowledge of both α and β is required if the anisotropy energy barrier K V and
the attempt time τ0 are to be reliably obtained from an analysis based solely on the peak
positions.

1. Introduction

Magnetic nanoparticles have been a topic of intense research
due to their many novel properties [1–6]. However, when
studying these new phenomena, attention should be paid
to the fact that the traditional ways of analysing and
interpreting experimental data may no longer be adequate
when dealing with effects induced as a consequence of the
finite size. This is particularly important in studies of
antiferromagnetic nanoparticles [6]. For example, due to the
small magnetic moment in antiferromagnetic nanoparticles, the
Zeeman energy is often comparable to the anisotropy energy,
which consequently must be considered when analysing, e.g.,
magnetization data [7]. Moreover, since most samples are not
monodisperse, it is important to consider the consequences of
the size distribution. Silva et al [8] recently discussed the
effect of a magnetic moment distribution on the interpretation
of magnetization data for antiferromagnetic nanoparticles.
Another important aspect is the different size dependence of
the magnetic moment for ferromagnetic and antiferromagnetic

nanoparticles. In antiferromagnetic nanoparticles at low
magnetic fields, the magnetization is due to the presence of an
uncompensated moment, which is assumed to have a median
size given by

μu = μatnu ≈ μat N
p, (1)

where nu is the number of uncompensated magnetic atoms,
N is the total number of magnetic atoms, μat the magnetic
moment per atom, and p is a parameter ranging from 1/3 to
2/3 [9–11], which depends on how the uncompensated spins
are distributed in the particle. If the nanoparticles have random
occupancy of all lattice sites, p � 1/2. If the interior of
the particles is assumed defect-free, but there is a random
occupancy of surface sites, the number of uncompensated spins
should be proportional to the square root of the number of
surface sites, i.e. p � 1/3. In the case of cubic particles
consisting of either an even or an odd number of planes with
parallel spins, but with alternating magnetization directions,
p � 2/3. In poorly crystalline antiferromagnetic particles
such as ferritin and ferrihydrite it has been found that p � 1/2
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whereas p � 1/3 has been obtained in some samples of NiO
nanoparticles [6]. In a ferromagnet, p = 1.

In this work we study the relationship between the peak
temperature Tp obtained from ac magnetization measurements
and the superparamagnetic blocking temperature TB for several
values of p (1/3, 1/2, 2/3, and 1). Although the peak position
of the in-phase component (χ ′) of the ac susceptibility has
previously been discussed for some of the above cases [12],
to our knowledge this is the first time that the relationship
between TB and the peak positions of both the in-phase (χ ′)
and out-of-phase (χ ′′) component is systematically studied.

2. Theory

Superparamagnetic relaxation takes place when the thermal
energy kBT becomes sufficiently large in relation to the
anisotropy energy barrier separating the easy directions of
magnetization. In that case it becomes possible for the
magnetization to surmount this barrier. It is often assumed that
the magnetic anisotropy is uniaxial with an anisotropy energy
given by

Ea = K V sin2 θ, (2)

where K is the anisotropy constant, V is the volume of the
particle, and θ is the angle between the magnetization direction
and the easy axis of magnetization. Equation (2) represents
two energy minima separated by an energy barrier of height
K V . For non-interacting particles the average time between
magnetization reversals is usually assumed to be given by the
Arrhenius-like Néel–Brown expression [13, 14]

τ = τ0 exp

(
K V

kBT

)
, (3)

where τ0 ∼ 10−9–10−13 s and depends only weakly on
temperature. Experimental data are usually obtained as the
result of measuring a signal on a timescale τm, characteristic
of the experimental method. If τ � τm, the observed
magnetization will be the thermal equilibrium value. On the
other hand, if τ � τm, the observed magnetization will appear
static. The temperature at which τm = τ is denoted the
blocking temperature TB. Since for a single particle

K V = − ln

(
τ0

τm

)
kBTB, (4)

TB is directly related to the size of the energy barrier. In the
presence of a distribution of volumes, the blocking temperature
refers to a suitable parameter of this distribution, either the
median volume Vm or the average volume 〈V 〉. In this work,
we relate the blocking temperature to the median volume Vm

of a volume-weighted volume distribution (i.e., particles with
V < Vm constitute half the total volume). Note, that in the
case of ac susceptibility, τm is related to the angular frequency
ω = 2π f of the applied field rather than its frequency f , that
is, τm = 1/ω [15, 16].

From an experimental point of view, one is often interested
in determining the blocking temperature in order to obtain
knowledge about the anisotropy energy barrier and τ0 of a

given sample. In magnetization measurements (dc in zero-
field-cooled (ZFC) data, or ac in χ ′ and χ ′′ data) a peak in
the signal is observed at a temperature Tp, which is often
interpreted as the blocking temperature. However, as a number
of authors (e.g., [12, 17, 18]) have discussed, the observed peak
temperature does not necessarily correspond to the blocking
temperature if a distribution of volumes is present. In general,
the relationship between the two may be expressed through
a parameter β , such that Tp = βTB. Gittleman et al [12]
examined the peak positions of the in-phase component of
the ac susceptibility (χ ′) and found β for a number of simple
volume distributions. Jiang and Mørup [17] considered ZFC
data using a log-normal distribution of volumes and examined
the dependence of β on the width σV of the distribution for
p = 1 and 1/3. They also found that the value of β is different
for ferromagnetic and antiferromagnetic systems.

3. Simulation procedure

In the following, we derive the expressions used to calculate
χ ′ and χ ′′. Consider a sample subjected to a time-varying
magnetic field

h(t) = h0 cos(ωt). (5)

The resulting magnetization of the sample is

M(t) = χac(ω, T )h(t), (6)

where the susceptibility can be written as

χac(ω, T ) = χ ′(ω, T ) + iχ ′′(ω, T ). (7)

χ ′ and χ ′′ are the in-phase and out-of-phase components,
respectively. These may be found using the model by
Gittleman et al [12] where the susceptibility in the time domain
is expressed as

χac(t, T ) = χ0 + (χ∞ − χ0)(1 − e−t/τ ). (8)

Here, χ0 and χ∞ are the susceptibility of the blocked and
unblocked (superparamagnetic) particles, respectively. A
Fourier transformation of equation (8) yields

χac(ω, T ) = χ∞ + iωτχ0

1 + iωτ
, (9)

and insertion of the following expressions for χ0 and χ∞ [12]

χ0 = μ0 M2(V )

3K
(10)

χ∞ = μ0M2(V )V

3kBT
(11)

gives

χac(ω, T ) = μ0M2(V )

1 + iωτ

[
V

3kBT
+ iωτ

3K

]
, (12)

which leads to

χ ′(ω, T ) = μ0M2(V )

3K

(
K V

kBT

1

1 + (ωτ)2
+ (ωτ)2

1 + (ωτ)2

)

(13)
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χ ′′(ω, T ) = μ0 M2(V )

3K

(
ωτ

1 + (ωτ)2
− K V

kBT

ωτ

1 + (ωτ)2

)
.

(14)
Note, that τ also depends on the temperature as given by (3).
In the above expressions we have written the magnetization
as M(V ) to emphasize the volume dependence. It should
be noticed that because of the randomness of the occupation
of the lattice sites, particles with identical volumes can have
different magnetic moments. As shown in the appendix, this
can be taken into account by replacing M2(V ) by the second
order moment of the distribution of magnetization, μu/V , for
particles with volume V . Using equation (1), one finds

M(V ) = μu

V
= μatc

pV p−1. (15)

This is different from ferromagnetic particles where the
magnetization is independent of volume. The constant c
appearing in this expression is found using that the volume and
the number of atoms are related as N = [z NAρ/Mmol]V ≡
cV . Here, ρ is the density of the material, Mmol is the molar
mass, z is the number of magnetic atoms per formula unit, and
NA is Avogadro’s number.

We now proceed by considering a sample with a
distribution of volumes. Defining y = V/Vm, we get

M(V )

Mm
= cV p−1

cV p−1
m

= y p−1, (16)

where Mm is the magnetization of a particle with median
volume Vm. We now write the expressions for χ ′ and χ ′′ as

χ ′(ω, T ) = μ0 M2
m

3K

∫ ∞

0

(
K Vm

kBT

y

1 + (ωτ)2

+ (ωτ)2

1 + (ωτ)2

)
y2 p−2 pV (y) dy (17)

χ ′′(ω, T ) = μ0 M2
m

3K

∫ ∞

0

(
ωτ

1 + (ωτ)2

− K Vm

kBT

yωτ

1 + (ωτ)2

)
y2 p−2 pV (y) dy, (18)

where pV (y) dy is the volume-weighted volume distribution
(i.e., the volume fraction of the sample with volume between
V and V + dV is pV (V/Vm) d(V/Vm)). For the simulations
we use the log-normal distribution

pV (y, σV ) dy = 1√
2πσV y

exp

(
− ln2 y

2σ 2
V

)
dy, (19)

which is commonly encountered in the literature. In the
following simulations, Vm enters as a parameter. However,
we report for convenience the particle sizes in terms of the
diameter dm of a spherical particle having volume Vm.

4. Results and analysis

The ac susceptibility at different frequencies f as a function
of temperature was calculated for K = 5 × 104 J m−3 and

Figure 1. χ ′ and χ ′′ as a function of temperature for various values
of (a) f , (b) p, (c) σV and (d) τ0. Parameters that were not varied
were fixed to f = 100 Hz, σV = 0.5, p = 1/2, τ0 = 10−11 s, and
dm = 5.2 nm. The curves in (b) were normalized by the peak
temperature value.

different values of p, σV , τ0 and dm. For the calculations
(with χ ′ and χ ′′ in arbitrary units) the parameters c and μat,
can be randomly chosen as they only affect the total scaling
through Mm, but not the positions of the peaks. Figure 1 shows
examples of the resulting data for selected combinations of p,
σV , f , and τ0.

For each of these datasets the peak positions, designated
T ′

p and T ′′
p , for the in-phase and out-of-phase components,

respectively, were determined and compared to the value of TB

calculated from equation (4). For each set of the parameters p,
σV , and τ0 we obtained a range of (Tp, TB) values by varying
f . Figure 2 shows selected results.

From figure 2 one may notice that T ′
p and T ′′

p , respectively,
are approximately linearly related to TB. This was the case
for all combinations of the parameters. Consequently, we have
fitted the observed peak temperatures to the expressions

T ′
p = α′ + β ′TB (20)

T ′′
p = α′′ + β ′′TB (21)

in order to obtain the parameters α and β . Figures 3 and 4 show
the results. In all cases excellent fits were obtained. However,
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Figure 2. The peak positions T ′
p (full symbols) and T ′′

p (open
symbols) as a function of TB for selected datasets (triangles:
p = 1/2, σV = 0.5, circles: p = 1, σV = 1.0). τ0 = 10−11 s and
dm = 5.2 nm were used in the simulations. The dotted line
corresponds to Tp = TB.

Figure 3. α′ and α′′ as a function of σV . The values τ0 = 10−11 s and
dm = 5.2 nm were used in the calculations.

it was necessary to have α = 0. We obtained similar results for
other values of τ0 and dm.

It can be seen from figure 3 that α′ increases with
increasing σV and that α′ varies considerably with p. For
σV > 0.8 and p = 1/3, α′ is found to decrease slightly.
Although α′′ exhibits some dependence on p, its magnitude
remains almost negligible compared to the peak temperatures.

From figure 4 it is seen that β ′ increases with increasing
σV in the entire range only for p = 1, whereas for p < 1, β ′
first increases slightly and then decreases for σV > 0.3. This is
in agreement with the calculations by Jiang and Mørup [17].
β ′′ remains close to 1 for p = 1, whereas for p < 1, it
decreases with increasing σV .

It is interesting to consider the dependence of T ′
p on T ′′

p ,
which we write as T ′

p = A + BT ′′
p . According to (20) and (21),

A = α′ − (β ′/β ′′)α′′ and B = β ′/β ′′. Figure 5 shows the

Figure 4. β ′ and β ′′ as a function of σV . The values τ0 = 10−11 s and
dm = 5.2 nm were used in the calculations.

Figure 5. The parameters A and B as a function of σV . The values
τ0 = 10−11 s and dm = 5.2 nm were used in the calculations.

values of A and B calculated from the parameters shown in
figures 3 and 4. It is remarkable that the values of B all fall on
the same line for all p values. The values of A, however, show
some variation. Figure 6 shows B for other values of τ0 and
dm. As one may notice, slightly different curves are found for
other values of τ0. However, no differences were observed if
dm was changed. A (not shown) showed some dependence on
all parameters.

5. Discussion

The values of τ0 and K Vm can be determined from an analysis
of ln(ω) versus 1/TB. As equation (3) can be rewritten

ln(ω) = ln(1/τ0) − K Vm

kB

1

TB
, (22)

this should give a straight line with slope −K Vm/kB and
intersect ln(1/τ0) at 1/TB = 0. If, as it is common, Tp is

4
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Figure 6. The parameter B for p = 1/2 and various values of τ0 and
dm.

Figure 7. ln(ω) as a function of 1/Tp, with Tp obtained from
simulated χ ′ (��) and χ ′′ (◦) data (with p = 1/2, σV = 0.5, and
τ0 = 10−11 s), respectively. We also show the fits to equation (22)
(lines), and, for comparison, ln(ω) as a function of 1/TB (×).

taken as TB, erroneous values of τ0 and K Vm will be obtained.
Figure 7 illustrates this problem. We plot ln(ω) as a function
of 1/Tp for a selected dataset, in this case with p = 1/2,
σV = 0.5, and τ0 = 10−11 s. The corresponding plot with the
real values of 1/TB is shown for comparison. The difference is
quite distinct. Table 1 lists the values of K Vm and τ0 obtained
from linear regression. The values obtained for p = 1 and
τ0 = 10−9 s are also shown. A considerable discrepancy is
observed for both K Vm and τ0. The value of τ0 determined
from the χ ′′ peaks, however, is quite close to the correct value.

To estimate in a more general sense the deviation resulting
from this incorrect use of Tp, we use the replacement TB =
(1/β)(Tp − α) and obtain

ln(ω) = ln(1/τ0) − K Vm

kB

β

Tp − α
. (23)

While this is not a linear function in 1/Tp, it closely resembles
one when Tp falls within the range of values typically
encountered. The slope and intersect, however, are different
from K Vm/kB and ln(1/τ0) as may be shown by a first
order Taylor expansion of equation (23) around a point 1/T0,
suitably chosen in the middle of the range of 1/Tp for the

Table 1. Apparent values of K Vm/kB and τ0 (for σV = 0.5)
obtained when Tp is taken as TB in (22). The correct value of
K Vm/kB is 267 K.

τ0 (s) 10−11 10−11 10−9 10−9

p 1/2 1 1/2 1

(K Vm)apparent/kB (K)

From χ ′ 346 444 346 445
From χ ′′ 207 266 207 266

(τ0)apparent (s)

From χ ′ 5.8 × 10−12 5.8 × 10−12 5.6 × 10−10 5.6 × 10−10

From χ ′′ 1.1 × 10−11 1.1 × 10−11 1.1 × 10−9 1.1 × 10−9

dataset. This gives

ln(ω) ≈ ln(1/τ0) + K Vm

kB

αβ

(T0 − α)2
− K Vm

kB

T 2
0 β

(T0 − α)2

1

Tp
(24)

from which we obtain

ln(τ0)apparent = ln(τ0) − K Vm

kB

αβ

(T0 − α)2
, (25)

and the slope

(
K Vm

kB

)
apparent

= K Vm

kB

T 2
0 β

(T0 − α)2
. (26)

This demonstrates why different values of K Vm/kB and τ0 are
found when TB is replaced by Tp in equation (22). Note the
consequences of having α = 0. If α = 0, the intersect would
be unaffected and the slope would simply be modified by the
factor β , making the analysis much simpler. As shown here,
simply using Tp as TB will lead to erroneous values of K Vm

and τ0. This is also the case if it is assumed that Tp = βTB.
Thus, the finite value of α generally cannot be ignored.

From (25) we see that the sign of α determines whether
the value of τ0 is over- or underestimated. From figure 3
we see that for σV > 0.2, α′ > 0, hence τ0 will in most
cases be underestimated. A detailed analysis (not shown here)
has revealed that the relative error in the determination of
τ0 depends mainly on σV , whereas it is independent of p
and depends only weakly on τ0. This is also demonstrated
by the values listed in table 1. As the present analysis
has shown, however, the magnitude of α′′ is typically small
compared to the peak values. Consequently, the error in the
determination of τ0 will be minimal when peaks of the out-of-
phase susceptibility data are used, whereas using the in-phase
data will give considerable errors. It is important, however,
to keep in mind that this only holds when TB is defined in
terms of the median volume. Had we used instead the average
volume, different results would have been obtained, since for
a log-normal distribution it is well known that 〈V 〉/Vm =
exp(σ 2

V /2). Consequently, the blocking temperature defined
in terms of 〈V 〉 would be larger, giving different values of α′,
β ′, α′′, β ′′.

The advantage of using equation (22) to determine τ0

and K Vm is that one avoids having to do a full-curve fit

5
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to expressions like (17) and (18). The analysis presented
here, however, shows that, without knowledge of α and β ,
this approach may yield systematic errors in the estimates of
K Vm and τ0. It should be noted, though, that for p = 1,
α′′ ≈ 0 and β ′′ ≈ 1 and is almost independent of σV . Thus,
for ferromagnetic particles the error in τ0 and K Vm will be
negligible if the χ ′′ data are used for the analysis. In the case
of antiferromagnetic particles, the χ ′′ data will give almost
correct values for τ0, but not for K Vm. If the χ ′ data are used
in the analysis, the values of τ0 and K Vm will be incorrect
both for ferromagnetic and antiferromagnetic particles. Better
estimates of K Vm may, in principle, be obtained by using (25)
and (26) and the appropriate values of α and β , which may
be obtained if the values of τ0, p and σV are approximately
known. However, if the data are not compromised by, e.g.,
impurity signals, a full-curve analysis may prove rather simple
and will yield more accurate values of not only K Vm and τ0,
but also σV and p [19]. If the quality of the data does not permit
such an analysis, it should be kept in mind, though, that the
most accurate results are obtained from the χ ′′ peak positions.

6. Summary

We have studied the correlation between superparamagnetic
blocking temperatures and peak temperatures obtained from
ac magnetization measurements. We obtain different results
for ferromagnetic materials and antiferromagnetic materials
due to the different relation between volume and magnetic
moment. If the anisotropy energy barrier K Vm and the attempt
time τ0 are determined directly from the peak positions, these
relationships must be taken into consideration. Otherwise, only
rough estimates of K Vm and τ0 may be obtained. Through the
analysis presented here we have quantified the error resulting
from the uncritical use of the peak positions, and have found
that the magnitude of this error depends on the parameters
p, τ0, σV . For ferromagnetic particles, though, using the
peak positions of χ ′′ will give rather accurate results. For
p < 1 the value of τ0, but not K Vm, may be determined with
good accuracy from χ ′′ peak positions. Furthermore, if one
compares peaks temperatures obtained from χ ′ data with those
obtained from χ ′′, a relationship is found which is independent
of the type of (magnetic) material. This may be utilized to
determine the width of the particle size distribution.
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Appendix

In the expressions for χ ′ and χ ′′ (12)–(14) it is usually assumed
that there is a relationship between the particle volume and

the magnetic moment. However, if the magnetic moments
are due to randomness of the occupation of lattice sites as in
antiferromagnetic nanoparticles, this is not the case. Particles
with a given volume, V , can have different moments, described
by a distribution function, ρV(μu). The contribution to the ac
susceptibility from the particles with volume V is then given
by

χac(ω, T ) =
∫ ∞

0

χ∞ + iωτχ0

1 + iωτ
ρV(μu) dμu. (A.1)

Because M(V ) = μu/V we find by inserting (10) and (11) in
equation (A.1)

χac(ω, T ) = μ0

1 + iωτ

[
V

3kBT
+ iωτ

3K

]

× 1

V 2

∫ ∞

0
μ2

uρV(μu) dμu. (A.2)

Thus one obtains the correct expressions for χac(ω, T ) by
substituting M2(V ) by the second order moment of the
magnetization distribution

M2(V ) = V −2
∫ ∞

0
μ2

uρV(μu) dμu (A.3)

in (12)–(14).
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[10] Néel L 1962 Low-Temperature Physics ed
C DeWitt et al (New York: Gordon and Breach)

[11] Richardson J T, Yiagas D I, Turk B, Forster K and
Twigg M V 1991 J. Appl. Phys. 70 6977

[12] Gittleman J I, Abeles B and Bozowski S 1974 Phys. Rev. B
9 3891
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